

STEAM Education for Gifted Individuals

WP2: Training Resources for Talented Individuals

Giftled Curriculum for Trainers

PROJECT N°: 2022-1-PL01-KA220-SCH-000087644

Co-funded by

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission the European Union cannot be held responsible for any use which may be made of the information contained therein.

Abstract

The document contains the fourth WP2 result: GiftLed Curriculum for trainers.

Author and Editor: AHE **Contributing Partners: PARTNERS**

\bigcirc

This document may be copied, reproduced or modified according to the rules. In addition, an acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

© Copyright 2024 GIFTLED

Disclaimer

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Information

Project	GIFTLED - STEAM Education for Gifted Individuals
Project №	2022-1-PL01-KA220-SCH-000087644
Work Package	WP2 – Training Resources for Talented Individuals
Date	15/09/2024
Type of Document	Version 1
Language	English

(link web)

Consortium

Table of Content

Abstract	1
Disclaimer	2
Information	2
Consortium	2
1. Introduction	4
2. Curriculum for Trainers – Giftled Method	4
3. Giftled Curriculum for Trainers	5
4. Content of Curriculum Modules	9
4.1. Module no 1: Electrical Circuits in Physics	9
4.2. Module no 2: From Caves to Modernity	15
4.3. Module no 3: Wind Turbines	20
4.4. Module no 4: Earthquake Resistant Buildings	25
4.5. Module no 5: Three-dimensional Geometry	29
4.6. Module no 6: Exploring Geometric Shapes and Measurement	35
4.7. Module no 7: Virtual Art Gallery	40
5. AR Tool: Zapworks Designer	45
Annex 1. Guidelines for Curriculum Modules	46

1. Introduction

A curriculum was developed and designed to demonstrate how the GIFTLED method can be used in STEAM disciplines for inclusion and education of gifted/talented individuals. The curriculum includes content, process and product parts. 7 topics were selected from STEAM disciplines and the content (objectives & topic), process (educational method – learning by design) and product (creative learning products) were demonstrated. The curriculum was developed through the use of previously developed products: augmented reality case studies brochure and Toolkit Introduction Videos (TIVs).

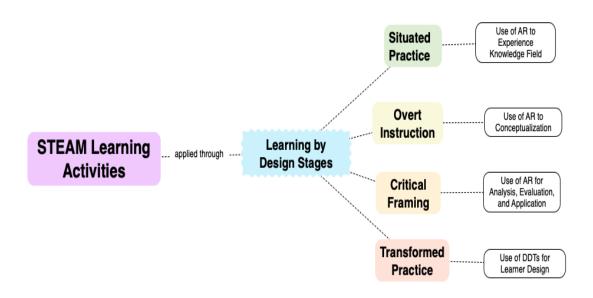
A curriculum describes how to use method GiftLed in "Learning by Design" method in gifted/talented STEAM education to meet special educational necessities of gifted/talented education and their talent development. Curriculum involves content (including objectives), process, and product dimensions of the use of digital and augmented reality toolkit through "learning by design" in STEAM education.

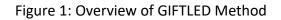
Curriculum for Trainers – Giftled Method

The Giftled Method, its idea, concept, methodology and tools, were presented in detail in document "GIFTLED: Learning by Design Method in My Educational Work".

This project proposes a new and innovative enrichment method which aims to foster STEAM education of gifted learners and provide effective resources and tools for teachers of gifted. Considering the gifted learners' differences, abilities, and potentials, the GIFTLED method aims to promote STEAM learning regarding (1) maximum achievement in basic skills, (2) content beyond the prescribed curriculum, (3) exposure to a variety of fields of study in STEAM, (4) student-selected content, (5) high content complexity, (6) experience in creative thinking and problem-solving, (7) development of thinking skills, (8) development of digital literacy skills (9) affective development including intrapersonal and interpersonal, (10) development of productivity, and (10) development of motivation and engagement.

For this aim, firstly, the GIFTLED method adopts the "learning by design" approach as the pedagogical and instructional strategy. It follows and employs the activity types which enable the transformation of knowledge according to gifted learners' skills and potential. In other words, the "learning by design" approach is a strategy for the differentiation of processes in STEAM learning for gifted learners. Secondly, for achieving the above-mentioned aims, the GIFTLED method integrates digital design tools and AR applications. Digital design tools and AR applications are used in the "learning by design" approach in STEAM education. The use of these digital tools is a way to differentiate the learning environment. Teachers will use AR tools in the first three stages of the "learning by design approach". In the fourth stage of the approach, students will use digital design tools (DDTs) for applying the knowledge and design their own creative learning products. The GIFTLED method is visualised in Figure 1. In the





forthcoming parts of the handbook, the teachers will be informed in detail regarding how to use and adapt the GIFTLED method in their STEAM education.

3. Giftled Curriculum for Trainers

The curriculum shows on how to use GiftLed method in "Learning by Design (LbyD)" method in gifted/talented STEAM education to meet the special educational needs of gifted/talented education and their talent development. The GIFTLED Method is a method which encovers the use of LbyD approach in STEAM education. The AR tools and digital design tools will be used as a tool to perform GIFTLED method in gifted STEAM education. Curriculum involves content (including objectives), process, and product dimensions of the use of digital and augmented reality toolkit through "learning by design" in STEAM education.

The STEAM disciplines, such as science, technology, engineering, art and mathematics, are currently the important components of education process both in primary and secondary schools in each partner countries as well as in all EU countries and also world countries. The different technologies that are developing currently very quickly are based on these disciplines. Especially, the IT and ICT technologies that are present in our public and private life every day are joined with STEAM disciplines.

The GIFTED curriculum is based on Learning by Design method which is a project-based and inquiry-based learning approach that integrates Science, Technology, Engineering, Arts, and Mathematics education with the use of design thinking and problem-solving skills, and also

creativity potentials in STEAM education process. It has to fulfil the standards for gifted education and STEAM education that are as follows:

- provide opportunities for independent research,
- offer advanced coursework, •
- create opportunities for hands-on learning,
- encourage interdisciplinary learning, •
- provide opportunities for design and problem solving,
- provide mentorship and internships.

Learning outcomes of GIFTED curriculum that the pupils will achieve upon the completion of the whole learning program based on GIFTLED method are the following:

LO1: maximum achievement in basic skills

- LO2: content beyond the prescribed curriculum
- LO3: exposure to a variety of fields of study in STEAM
- LO4: learner-selected content
- LO5: high content complexity
- LO6: experience in creative thinking and problem-solving
- LO7: development of thinking skills
- LO8: development of digital literacy skills
- LO9: affective development including intrapersonal and interpersonal
- LO10: development of productivity and development of motivation and engagement

Moreover, the Industry 4.0 that is currently present in our world and also the Industry 5.0 that is very close and will be present in very near future are based on IT/ICT technologies and STEAM disciplines.

Industry 4.0 or fourth industrial revolution represents the set of terms that describe social, industrial and technological changes brought about by the digital transformation of industry. Industry 4.0 is defined as a modern industry, supported by automation and information technology, new sub-production technologies (3D printing, VR, collaborative robots), IT / communication solutions (Cloud Computing, Big Data, Internet of Things) and enterprise management in the era of new industrial revolution.

The application of Industry 4.0 are as follows: (1) Internet of Things, (2) Data analytics and healthcare optimization, (3) IT integration and creation of cyber-physical systems (CPS), (4) Cybersecurity, (5) Artificial intelligence, (6) Additive printing (3D printing), (7) Digital and

digitization of production, (8) Cloud computing, (9) Big Data, (10) Virtual and augmented reality, (11) Collaborative robots, (12) Mobile robots, (13) RFID, (14) Mobile interfaces, (15) Blockchain, (16) Geolocation.

Title: GIFTLED Learning Program

Level: Primary/secondary school pupils aged 10-18

Primary mode of delivery: Face-to-face

Suggested duration: 4 hours face-to-face contact per week (2 x 2 meetings per week) – over a 7-week period (28 hours in total)

Aim: The principle aim of the GIFTLED curricular learning program is to stimulate interest and competences of gifted/talented individuals in STEAM (Science, Technology, Engineering, Art and Maths) subjects with the use of Learning by Design method. It is based on project-based learning, design thinking and problem-solving skills. This purpose will be archived by introducing the concepts that have real-life applications within the context of Industry 4.0 and smart cities.

Basic resources: AR case studies, Toolkit Introduction Videos (TIVs).

Content: The curriculum is designed to be delivered as 7 face-to-face modules for gifted/talented individuals:

The process proposed by the GIFLED curriculum is based on the Learning by Design approach. The realization of modules listed above have to be done according to this process, described in Chapter 1 of the Giftled Handbook. This process assumes that the first three steps of LbyD approach is done through the use of AR tools (Chapter 5 of the Handbook). The final, fourth, step of LbyD, in which pupils design or produce the problem solutions, is done through the use of Toolkit Introduction Videos (TIVs), presented in Table 1 (described in Chapter 6 of the Handbook).

The solutions and products designed and/or produced by pupils during the realization of the modules can be different. It depends of the case studies proposed in the framework of GIFTLED curriculum and in the framework of teachers' propositions during the lessons with the pupils. However, each time they should be adapted to the knowledge level of pupils, their experience and intelligence.

The AR (augmented reality) application that is suggested to use in the realization of the three first steps of the modules according to the LbyD approach supporting the GIFTLED curriculum

is the Zapworks Designer – Zappar tool (<u>www.zappar.com</u>). Zappar connects the digital world with the things around the user. It's like opening up to another other dimension where everyday things can transform to unlock a video, game, and even 3D characters that user can play with directly.

The STEAM Digital Design Tool that are suggested to use in the implementation of the particular modules were chosen based on their features, functions, free access and moderate difficulties. They together create the GIFTLED Toolkit Introduction Videos (TIVs). The suggested tools are presented in table 1 divided according to the STEAM disciplines.

	STEAM discipline	STEAM Toolkit Introduction Videos (TIVs) to use			
1	Science	Go-Lab, <u>https://www.tinkercad.com/</u>			
		Tinkercad, <u>https://www.golabz.eu/</u>			
2	Technology/Coding	Code, <u>https://code.org/</u>			
		Tynker, <u>https://www.tynker.com/</u>			
3	Engineering	SketchUp, https://www.sketchup.com/products			
		Algodoo, <u>http://www.algodoo.com/</u>			
4	Art	Canva, <u>https://www.canva.com/</u>			
		Powtoon, <u>https://www.powtoon.com/</u>			
5	Mathematics	Geogebra, <u>https://www.geogebra.org/?lang=en</u>			
		Infogram, <u>https://infogram.com/</u>			

Table 1. TIVs according to STEAM disciplines suggested for GIFTLED curriculum

It is recommend to realize each module in the form of project realized individually by each pupil or by the small groups of pupils.

The GIFTLED method integrates AR applications and digital design tools which are used in the "learning by design" approach in STEAM education. Teachers will use AR tools in the first three stages of the "learning by design approach", so

- 1. *Situated Practice* use of AR to experience knowledge field.
- 2. Overt Instructions use of AR to conceptualization.
- 3. *Critical Framing* use of AR for analysis, evaluation and application.

In the fourth stage of the approach, so *Transformed Practice*, pupils use Toolkit Introduction Videos (TIVs) for applying the knowledge and design their own creative learning products.

Teachers can prepare their own lesson modules based on the materials provided by the GIFTLED project, i.e. the handbook for teachers, case studies and Toolkit Introduction Videos (TIVs), intended for students and teachers.

The guidelines for preparing the modules, i.e. the purpose of the module, learning audience, learning outcomes, learning methods, duration, tools needed, scenario for learning (activities to fulfil for defined learning outcomes), reference materials and background content, evaluation of the module and assessment (multi-choice questions per learning outcome), are described in Annex 1.

Teachers are recommended to use the following template presented in Annex 1 to create their own lesson module:

4. Content of Curriculum Modules

The GIFTLED project has prepared 7 lesson modules, adapted to previously created resources, i.e. case studies and Toolkit Introduction Videos (TIVs), intended for students and teachers. These lessons can be used by teachers together with case studies and TIVs during the lesions with pupils, but they also serve as inspiration for teachers to create their own lessons.

Each module is divided into two lessons to give students adequate time to explore a given topic and teachers time to explain all the nuances of a topic to students.

MODULE TITLE	Understanding Electrical Circuits in Physics through AR and Simulations				
MODULE GOAL(S)	Module aims to equip learners with skills and knowledge related to understanding electrical circuits in physics. Learners will gain a deeper understanding of how series and parallel circuits function, including their impact on current flow and voltage distribution. They will learn how to adapt theoretical knowledge to practical applications by constructing and analysing simple electrical circuits. The module will help learners acquire the competences necessary to contribute to designing and evaluating effective circuit configurations.				
LEARNING AUDIENCE	• Educators and teachers responsible for instructing students aged 12-15 years old.				
LEARNING OUTCOMES	 Upon completing the Module, the learners should be able to: Explain the differences between series and parallel circuits, including how each affects current and voltage. Simulate the construction of series and parallel electrical circuits using PhET simulations. Compare the behaviour of series and parallel circuits in terms of simulated current flow and voltage distribution. Predict the impact of changing resistor configurations (series vs. parallel) on the simulated behaviour of electrical circuits. 				
LEARNING METHODS	• Direct Instruction: Use of the AR Case Study 1 (Electrical Circuits in Physics) to introduce concepts of series and parallel circuits.				

4.1. Module no 1: Electrical Circuits in Physics

	Interactive Simulations: Use PhET simulations to allow learners
	to simulate and manipulate series and parallel circuits.
	• Learning by Design: Engage learners in designing and
	constructing series and parallel circuits virtually through guided
	activities and experimentation.
	• Video-Based Learning: Use instructional videos ("Learning by
	Design and the PhET Tool" and "Tutorial for PhET Tool") to
	demonstrate practical applications and tips for using PhET
	simulations effectively.
	• Discussion and Reflection: Facilitate group discussions to analyse
	predictions and observations made during simulation activities.
DURATION:	Two (2) class periods (45 minutes each)
TOOLS NEEDED:	Computers or tablets with internet access for accessing PhET
	simulations.
	• Projection equipment or screens for displaying the AR Case Study
	on Electrical Circuits.
	• Access to the AR Case Study 1 (Electrical Circuits in Physics)
	developed earlier in the project for theoretical introduction.
	 Access to thr Toolkit Introduction videos ("Learning by Design
	and the PhET Tool" and "Tutorial for PhET Tool").
	 Additional classroom materials such as pens, paper, and
	whiteboards for group discussions and activities.
CLASS SESSION 1	Introduction to Series and Parallel Circuits
CLASS SESSION 1 CLASS SESSION GOAL(S)	
	Class session 1 provides learners with a comprehensive understanding of
	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the
	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits
	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the
	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the
	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different
	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types.
CLASS SESSION GOAL(S)	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to:
CLASS SESSION GOAL(S)	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: • Understand the fundamental differences between series and
CLASS SESSION GOAL(S)	Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: • Understand the fundamental differences between series and parallel circuits.
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations.
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations.
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations.
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations. Direct Instruction: Use of the AR Case Study to introduce concepts of series and parallel circuits.
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations. Direct Instruction: Use of the AR Case Study to introduce concepts of series and parallel circuits. Interactive Simulations: Use PhET simulations to allow learners
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations. Direct Instruction: Use of the AR Case Study to introduce concepts of series and parallel circuits. Interactive Simulations: Use PhET simulations to allow learners to simulate and manipulate series and parallel circuits.
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations. Direct Instruction: Use of the AR Case Study to introduce concepts of series and parallel circuits. Interactive Simulations: Use PhET simulations to allow learners to simulate and manipulate series and parallel circuits. Video-Based Learning: Use instructional videos ("Learning by
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations. Direct Instruction: Use of the AR Case Study to introduce concepts of series and parallel circuits. Interactive Simulations: Use PhET simulations to allow learners to simulate and manipulate series and parallel circuits. Video-Based Learning: Use instructional videos ("Learning by Design and the PhET Tool" and "Tutorial for PhET Tool") to
CLASS SESSION GOAL(S)	 Class session 1 provides learners with a comprehensive understanding of series and parallel circuits. Learners will gain insight into the fundamental concepts and principles of how series and parallel circuits affect current and voltage. They will also become familiar with the practical uses of these circuits through simulations, acquiring the knowledge and skills necessary to construct and compare different circuit types. Upon completing the class session 1, the learners should be able to: Understand the fundamental differences between series and parallel circuits. Explain how these circuits affect current and voltage using the AR Case Study and PhET simulations. Simulate the construction of series and parallel electrical circuits using PhET simulations. Direct Instruction: Use of the AR Case Study to introduce concepts of series and parallel circuits. Interactive Simulations: Use PhET simulations to allow learners to simulate and manipulate series and parallel circuits. Video-Based Learning: Use instructional videos ("Learning by

	• Discussion and Reflection: Facilitate group discussions to analyse
	predictions and observations made during simulation activities.
SCENARIO FOR LEARING:	Step 1 – Introduction (10 minutes):
	• Use the AR Case Study on Electrical Circuits to introduce the
	fundamental differences between series and parallel circuits.
	• Emphasize how each configuration affects current and voltage.
	Step 2 – Simulating Circuits with PhET Simulations (30 minutes):
	• Learning Video (10 minutes):
	1. Watch the Introduction videos ("Learning by Design and the
	<u>PhET Tool</u> " and " <u>Tutorial for PhET Tool</u> ") to understand how
	to use PhET simulations effectively for learning about circuits.
	• Quests-Tasks (20 minutes):
	1. Access PhET simulations on a computer or tablet.
	2. Simulate the construction of series and parallel circuits within
	the PhET environment.
	3. Compare the behaviour of these circuits in terms of current
	flow and voltage distribution.
	Step 3 – Wrap-Up and Discussion (5 minutes):
	 Recap the key points learned about electrical circuits.
	 Encourage students to reflect on their learning experiences and
	ask questions.
REFERENCE MATERIALS	AR Case Study on Electrical Circuits (Pages 1, 2, 3)
/ BACKGROUND	• Toolkit Introduction Videos ("Learning by Design and the PhET
CONTENTS	<u>Tool</u> " and " <u>Tutorial for PhET Tool</u> ")
	 PhET Interactive Simulations website for additional resources
EVALUATION OF THE	Question 1
CLASS SESSION 1 /	Which statement correctly describes the main difference between series
ASSESMENT	and parallel circuits in terms of current flow?
	1. Series circuits have a single pathway for current flow, while
	parallel circuits have multiple pathways.
	2. Series circuits have multiple pathways for current flow, while
	parallel circuits have a single pathway.
	3. Series circuits and parallel circuits have the same pathway for
	current flow.
	Feedback
	1. Correct. Series circuits have a single pathway for current flow,
	whereas parallel circuits provide multiple pathways.
	2. Incorrect. Series circuits have a single pathway for current flow,
	not multiple pathways.
	3. Incorrect. Series and parallel circuits differ in terms of current flow
	pathways. Series circuits have a single pathway, whereas parallel
	circuits have multiple pathways.
	Question 2

	Why are PhET simulations effective tools for learning about electrical
	circuits?
	1. They allow us to physically build circuits using real components.
	2. They provide interactive virtual environments to simulate circuit
	behaviour.
	3. They offer theoretical explanations without practical application.
	Feedback
	1. Incorrect. PhET simulations do not involve physical components. Instead, they provide virtual environments for simulating circuit behaviour.
	2. Correct. PhET simulations offer interactive virtual environments where we can simulate and manipulate circuits, aiding in
	understanding circuit behaviour practically.
	3. Incorrect. PhET simulations are interactive and provide practical simulations, not just theoretical explanations.
	Question 3
	What is the primary advantage of using the AR Case Study in learning
	about series and parallel circuits?
	1. It provides hands-on experience with physical circuit components.
	2. It offers visual and interactive explanations of circuit concepts.
	<i>3. It focuses on theoretical discussions without practical application.</i>
	Feedback
	1. Incorrect. The AR Case Study does not involve physical components
	but rather provides visual and interactive explanations.
	2. Correct. The AR Case Study offers visual and interactive
	explanations of circuit concepts, enhancing understanding
	through engagement with augmented reality.
	3. Incorrect. The AR Case Study integrates practical visual and
	interactive elements, not just theoretical discussions.
CLASS SESSION 2	Engaging in Learning by Design Activities
CLASS SESSION GOAL(S)	Class session 2 aims to equip learners with skills and knowledge related
	to designing and analysing electrical circuits. Learners will gain a deeper
	understanding of series and parallel circuits through hands-on design
	activities and simulations. They will learn how to apply their theoretical
	knowledge to predict the impact of changing resistor configurations and
	relate their learning to real-life applications.
LEARNING OUTCOMES	Upon completing the class session 2, the learners should be able to:
	• Simulate the construction of series and parallel electrical circuits
	using PhET simulations.
	• Compare the behaviour of series and parallel circuits in terms of
	simulated current flow and voltage distribution.
	• Predict the impact of changing resistor configurations (series vs.
	parallel) on the simulated behaviour of electrical circuits.

LEARNING METHODS	Interactive Simulations: Continue using DET simulations to
	Interactive Simulations: Continue using PhET simulations to
	allow learners to explore and refine their understanding of circuit
	behaviour through hands-on virtual experimentation.
	• Learning by Design: Engage learners in designing and
	constructing series and parallel circuits virtually through guided
	activities and experimentation.
	• Discussion and Reflection: Facilitate group discussions to analyse
	predictions and observations made during simulation activities.
SCENARIO FOR LEARING:	Step 1 – Recap the Key Points (5 minutes):
	• Briefly review the key points learned in the previous class session.
	Step 2 – Learning Activities (20 minutes):
	• Engage in Learning by Design activities where learners will design
	and construct virtual series and parallel circuits using PhET
	simulations.
	Step 3 – Reflection (5 minutes):
	• Discuss in groups the predictions made and observations noted
	during the simulation activities.
	• Reflect on how these observations align with theoretical
	knowledge.
	Step 4 – Real-life examples (10 minutes):
	 Discuss real-life examples where series or parallel circuits are
	used, reinforcing theoretical concepts with practical applications.
	used, reinforcing incoretical concepts with practical applications.
	Examples:
	Series Circuits:
	• Christmas Lights: Older strings of lights where one bulb out
	means the whole string goes out.
	Smoke Detectors: Systems where triggering one detector
	completes the circuit for the alarm.
	Parallel Circuits:
	 Household Wiring: Electrical outlets and appliances that operate
	independently.
	 Battery Backup Systems: Batteries connected in parallel for
	increased capacity and longer duration
	increased capacity and longer duration.
	Step 5 – Wrap-Up and Discussion (5 minutes):
	Step 5 – Wrap-Up and Discussion (5 minutes): • Recap the key points learned about electrical circuits.
	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and
	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions.
REFERENCE MATERIALS	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and
/ BACKGROUND	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and introducing new activities and examples
	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and introducing new activities and examples PhET Interactive Simulations website for additional resources
/ BACKGROUND CONTENTS	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and introducing new activities and examples
/ BACKGROUND CONTENTS EVALUATION OF THE	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and introducing new activities and examples PhET Interactive Simulations website for additional resources
/ BACKGROUND CONTENTS EVALUATION OF THE CLASS SESSION 2 /	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and introducing new activities and examples PhET Interactive Simulations website for additional resources Real-Life Examples of Series and Parallel Circuits
/ BACKGROUND CONTENTS EVALUATION OF THE	 Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about electrical circuits. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and introducing new activities and examples PhET Interactive Simulations website for additional resources Real-Life Examples of Series and Parallel Circuits

2.	It excludes the use of simulations, focusing solely on theoretical discussions.
3.	It limits your exploration of circuit behaviour.
Feedb	ack
1.	Correct. Engaging in Learning by Design activities allows you to apply theoretical knowledge practically, enhancing your understanding of circuit behaviour. This is because
2.	Incorrect. Learning by Design activities involve practical application through simulations, not excluding them for theoretical discussions alone. This is because
3.	Incorrect. Learning by Design activities encourage exploration and application of circuit behaviour through simulations. This is because
Questi	ion 2
Why i.	s it important for us to discuss real-life examples of series and
	el circuits?
1.	To relate theoretical knowledge to practical applications.
2.	To avoid engaging in practical activities.
3.	To limit our understanding of circuit concepts.
Feedb	ack
1.	Correct. Discussing real-life examples helps us relate theoretical
	knowledge to practical applications, reinforcing our understanding of circuit concepts. This is because
	Incorrect. Discussing real-life examples enhances understanding by bridging theoretical knowledge with practical applications, rather than avoiding practical activities. This is because Incorrect. Discussing real-life examples expands understanding of circuit concepts, rather than limiting it. This is because
Questi	ion 3
	role do group discussions play in our learning about series and
	el circuits?
	They hinder reflection on simulation results.
	They encourage collaboration and deeper understanding.
	They limit interaction with PhET simulations.
Feedb	ack
	Incorrect. Group discussions actually encourage reflection on
	simulation results, fostering deeper understanding.
2.	Correct. Group discussions promote collaboration and deeper understanding of circuit concepts by sharing insights and

reflections on simulation activities.

3.	Incorrect.	Group	discussions	complement	intera	ction with	PhET
	simulation	ns by	providing	opportunities	for	reflection	and
	collaborat	ive leai	rning.				

4.2. Module no 2: From Caves to Modernity

MODULE TITLE	Experiencing Art through Augmented Reality
MODULE GOAL(S)	The goal of this module is to give students the information and abilities
	necessary to comprehend art and how it affects the society. Students will
	gain an understanding of how to apply theoretical knowledge to real-
	world situations via critical thinking and analysis of selected works of art.
	They will acquire a more profound comprehension of art history, along
	with its influence on contemporary art forms. Module will assist students
	<i>in gaining the skills required to participate in the creation and assessment of the art.</i>
LEARNING AUDIENCE	Educators are in charge of instructing students between the ages
	of 12 and 15.
LEARNING OUTCOMES	Upon completing the Module, the learners should be able to:
	• List the styles in art.
	 Know the features of different art styles.
	 Recognize works of art, their motifs and finding learner's own
	meaning to them.
	Become familiar with the most well-known artists from various
	eras.
LEARNING METHODS	• Introducing Basics: Use of the AR Case Study 2 (From Caves to
	Modernity) to introduce basics of art.
	 Working in Groups: Cooperate together in a group of few students to realize the common art resident
	students to realize the common art project.
	• Learning by Design: Using experimentation and guided exercises, students create their own artwork in a selected style.
	• Video-Based Learning: Use instructional videos (Learning By
	Design and Canva Tool and Tutorial for Canva Tool) to
	demonstrate practical applications and tips for using Canva
	design tool effectively.
	Conclusions: Organize discussion in groups to analyse artistic
	creations.
DURATION:	Two class lessons (45 minutes each)
TOOLS NEEDED:	 Computers or tablets with internet access for accessing Canva
	tool.
	 Equipment (computers, tablets or projection equipment) for displaying the AR Case Study on Art.
	 Access to the AR Case Study 2 (From Caves to Modernity) developed earlier in the project for theoretical introduction.

	• Access to the Toolkit Introduction videos (<u>Learning By Design and</u>
	<u>Canva Tool</u> and <u>Tutorial for Canva Tool</u>).
	• Extra tools like phones, whiteboard, pens, paper, etc., for group
	projects and discussions.
CLASS SESSION 1	Introduction to Exploring Art
CLASS SESSION GOAL(S)	First lesson gives students a thorough overview of art styles in the
	history of art over the centuries. Students will acquire understanding of
	the basic ideas and rules of art. Through exercises, they will also learn
	about the real-world applications of these genres and gain the
	information and abilities needed to evaluate various works of art.
LEARNING OUTCOMES	After completing the first lesson, students ought to be able to:
	Understand the fundamental differences between art styles
	existing in art history.
	• Model critical thought regarding selected pieces of art using the
	AR Case Study and Canva tool.
	• Explain how these artworks affected and affect people over the
	centuries.
LEARNING METHODS	• Introducing Basics: Use of the AR Case Study to introduce art
	styles.
	• Art Design: Use Canva tool to allow learners to design and create
	the first art project.
	• Video-Based Learning: Use instructional videos (Learning By
	<u>Design and Canva Tool</u> and <u>Tutorial for Canva Tool</u>) to
	demonstrate practical applications and tips for using Canva tool
	effectively.
	• Discussions: Begin class conversations and discussions based on
	students' observations.
SCENARIO FOR LEARING:	Step 1 – Introduction (15 minutes):
	• Use the AR Case Study on Art (From Caves to Modernity) to
	introduce the fundamentals of art
	Highlight which traits belong to which styles.
	Step 2 – Real-life examples (10 minutes):
	• Talk about examples in real life where art is employed. How it
	can affect people and their emotions?
	 Use the Toolkit Introduction Videos (Learning By Design and
	<u>Canva Tool</u>) to introduce the idea of Learning by Design concept.
	Step 3 – Educational exercises (15 minutes):
	• Let students use apps like <u>Google Arts & Culture</u> or " <u>DALL-E</u> " to
	choose their favourite pieces of art and describe them on paper.
	Step 4 – Conclusions (5 minutes):
	 Review the main concepts learned about art.
	 Engage students into discussions about their learning
	• Engage students into discussions about their rearning experience.
	experience.

REFERENCE MATERIALS	• AR Case Study on Art (Pages 1, 2, 3)
/ BACKGROUND CONTENTS	• Toolkit Introduction Videos (<u>Learning By Design and Canva Tool</u>
CONTENTS	and <u>Tutorial for Canva Tool</u>)
	Canva tool website for additional resources
EVALUATION OF THE	Question 1
CLASS SESSION 1 /	What is the significance of cave paintings in prehistoric times? Did they
ASSESMENT	serve as early forms of communication?
	1. Cave paintings are believed to be documenting important events,
	depicting religious or ritualistic practices, and possibly conveying
	information about hunting and daily life.
	2. Cave paintings were purely decorative and served no specific
	purpose other than to beautify living spaces.
	3. Cave paintings were only created by children as a form of early
	play and had no actual context.
	Answer
	1. Correct. They served as both a visual record and a tool for cultural
	transmission.
	2. Incorrect. They often depicted scenes of hunting, daily life, and
	spiritual beliefs, which were important to the communities that
	created them.
	3. Incorrect. Evidence suggests that cave paintings were created by
	skilled adults, serving purposes such as ritualistic practices,
	storytelling.
	Question 2
	How did the invention of photography influence the development of art?
	Did it let to the decline of traditional painting?
	1. Photography replaced traditional painting entirely because artists
	no longer needed to paint realistic scenes.
	2. The invention of photography revolutionized art by providing a
	new medium for capturing reality, leading to the rise of new artistic movements.
	3. The invention of photography had no significant impact on the
	development of art.
	Answer
	1. Incorrect. While photography did impact traditional painting, it
	did not replace it.
	2. Correct. Photography's ability to capture precise details led
	painters to explore other styles.
	3. Incorrect. It challenged artists to rethink their approaches to
	representation and spurred the development of new art
	movement.
CLASS SESSION 2	Learning by Design Activities
CLASS SESSION GOAL(S)	The second class session's objective is to provide students with the
	knowledge and skills necessary to create their original artwork. The

	ability to apply theoretical information to their own artwork and connect learning about practical application will be offered to the learners. They
	should gain a deeper understanding how art can influence our current
	life and help in learning and working in holistic manner.
LEARNING OUTCOMES	Upon completing the class session 2, the learners should be able to:
	 Design original artwork in style of their choice with the use of
	Canva tool supported by other art design tools if needs.
	 Learn how tools like Canva, with intuitive interface, ready-made
	• Learn now tools like Canva, with Intuitive Interface, ready-made templates and rich library of graphic resources, allow us to create
	professional graphic designs and projects without the need for
	advanced design skills.
	 Personal enrich themselves, understanding cultures and
	appreciating aesthetics over the centuries.
LEARNING METHODS	 Art Project Design: Realize a full art project design with the use
	of Canva to allow the students to know and explore the
	information about design and creation of arts in different styles.
	 Learning by Design: Engage learners in designing their own art
	project in groups through guided activities and teacher support in
	solving any problems.
	 Conclusions: Organize discussion in groups to conclude the effect
	of art project on them.
SCENARIO FOR LEARING:	Step 1 – Review the Concepts (5 minutes):
	 Go over the main ideas covered in the prior class session.
	• Use the Toolkit Introduction Videos (<u>Tutorial for Canva Tool</u>) to
	introduce the Canva Tool.
	Step 2 – Learning activities (30 minutes):
	• Divide learners into 4-5-person teams, giving the teams different
	art styles to draw using <u>Canva</u> tool and represent later.
	• Engage the students in Learning by Design activities and make
	sure each student in team has to draw some part of the drawing.
	• Discuss in groups the predictions made and observations noted
	during the project realization.
	Step 3 – Presentation and summary (10 minutes):
	• Each team picks one person to represent their artwork in front of
	the class.
	 Encourage students to reflect on what they have learned and
	summarize the lessons.
	Recap the key points the students learned about art.
REFERENCE MATERIALS	• Display providing exercises and reviewing the main ideas from the
/ BACKGROUND	first lessons.
CONTENTS	 Canva tool website and videos for additional resources
	• Toolkit Introduction Videos (Learning By Design and Canva Tool
	and <u>Tutorial for Canva Tool</u>)
	Real-life art examples.

EVALUATION OF THE	Question 1
CLASS SESSION 2 / ASSESMENT	What is the impact of Learning by Design exercises on you
	comprehension of art?
	1. Through real-world application, theoretical principles are
	reinforced.
	2. It only discusses theory and leaves out any real-world application
	<i>3.</i> It restricts your ability to explore art.
	Answer
	1. Correct. Engaging in Learning by Design activities allows you to
	apply theoretical knowledge practically, enhancing you
	understanding of art. This is because
	2. Incorrect. Learning by Design activities involve practical use, not
	excluding them for theoretical discussions alone. This is because
	<i>3. Incorrect. Learning by Design activities encourage exploration art</i>
	This is because
	Question 2
	Why is it crucial for us to discuss past art styles?
	1. To understand past societies and their people.
	2. To refrain from doing actual tasks.
	<i>3. To restrict our comprehension of art.</i>
	Answer
	1. Correct. Discussing real-life examples helps us relate theoretica
	historic knowledge, reinforcing our understanding of art. This is
	because
	2. Incorrect. Discussing real-life examples enhances understanding
	by bridging theoretical knowledge with practical use, rather than
	avoiding practical activities. This is because
	3. Incorrect. Discussing real-life examples expands understanding o
	art, rather than limiting it. This is because
	Question 3
	What role do group working and discussions play in our learning about
	art?
	1. They make it difficult to reflect.
	2. They limit our imagination.
	3. They promote cooperation and deeper knowledge.
	Answer
	1. Incorrect. Group working and discussions actually encourage
	reflections, fostering deeper understanding.
	2. Incorrect. Group working and discussions actually encourage
	reflections, fostering deeper understanding and imagination.
	3. Correct. Group discussions promote collaboration and deepe

3. Correct. Group discussions promote collaboration and deeper understanding of art by sharing insights and reflections.

4.3. Module no 3: Wind Turbines

MODULE TITLE	Understanding how Wind Turbines Work
MODULE GOAL(S)	This module aims to equip learners with skills and knowledge related to understanding how wind turbines generate electricity. Learners will gain a deeper understanding of how wind turbines function, including their specifications to be most effective. They will learn how to adapt theoretical knowledge to practical applications by constructing and analysing a wind turbine. The module will help learners acquire the competences necessary to contribute to designing and evaluating effective wind turbines.
LEARNING AUDIENCE	• Educators and teachers responsible for instructing students aged 16-18 years old.
LEARNING OUTCOMES	 Upon completing the Module, the learners should be able to: Explain the differences between onshore and offshore wind turbines. Simulate the construction of a wind turbine using SketchUp. Compare onshore and offshore wind turbines. Point out the characteristics of wind turbines which generate electricity.
LEARNING METHODS	 Direct Instruction: Use of the AR Case Study 3 (Understanding Wind Turbines) to introduce wind turbine concepts Interactive Simulations: Use SketchUp to allow learners to simulate and manipulate a wind turbine. Learning by Design: Engage learners in designing and constructing a wind turbine virtually through guided activities and experimentation. Video-Based Learning: Use instructional videos ("Learning by Design and SketchUp Tool" and "Tutorial for SketchUp Tool") to demonstrate practical applications and tips for using SketchUp simulations effectively. Discussion and Reflection: Facilitate group discussions to analyse predictions and observations made during simulation activities.
DURATION:	Two (2) class periods (45 minutes each)
TOOLS NEEDED:	 Computers or tablets with internet access for accessing SketchUp. Projection equipment or screens for displaying the AR Case Study on Wind Turbines. Access to the AR Case Study 3 (Understanding Wind Turbines) developed earlier in the project for theoretical introduction. Access to the Toolkit Introduction videos ("Learning by Design and SketchUp Tool" and "Tutorial for SketchUp Tool"). Additional classroom materials such as pens, paper, and whiteboards for group discussions and activities.

CLASS SESSION 1	Introduction to Wind Turbines
CLASS SESSION GOAL(S)	Class session 1 provides learners with a comprehensive understanding of wind turbines. Learners will gain insight into the fundamental concepts and principles of how wind turbines generate electricity. They will also become familiar with the components of wind turbines through simulations, acquiring the knowledge and skills necessary to construct wind turbines.
LEARNING OUTCOMES	 Upon completing the class session 1, the learners should be able to: Understand the fundamental components of a wind turbine Explain how these wind turbines generate electricity using the AR Case Study and Sketchup. Simulate the construction of a wind turbine using SketchUp.
LEARNING METHODS	 Direct Instruction: Use of the AR Case Study to introduce concepts of wind turbines Interactive Simulations: Use SketchUp to allow learners to simulate and manipulate wind turbines. Video-Based Learning: Use instructional videos ("Learning by Design and SketchUp Tool" and "Tutorial for SketchUp Tool") to demonstrate practical applications and tips for using SketchUp simulations effectively. Discussion and Reflection: Facilitate group discussions to analyse predictions and observations made during simulation activities.
SCENARIO FOR LEARING:	
	 Step 1 – Introduction (10 minutes): Use the AR Case Study on Wind Turbines to introduce the fundamental elements and types of wind turbines. Emphasize how each configuration affects current and voltage. Step 2 – Simulating with SketchUp (30 minutes): Learning Video (10 minutes): 1. Watch the Introduction videos ("Learning by Design and
	 SketchUp Tool" and "<u>Tutorial for SketchUp Tool</u>") to understand how to use SketchUp for effective learning. Quests-Tasks (20 minutes): Access SketchUp on a computer or tablet. Simulate the construction of a wind turbine using SketchUp. Observe what is required to construct a functional wind turbine
	Step 3 – Wrap-Up and Discussion (5 minutes):
	 Recap the key points learned about wind turbines. Encourage students to reflect on their learning experiences and ask questions.
REFERENCE MATERIALS / BACKGROUND CONTENTS	 AR Case Study on Wind Turbines (Pages 1, 2, 3) Toolkit Introduction Videos ("Learning by Design and SketchUp Tool", "Tutorial for SketchUp Tool") SketchUp website for additional resources

EVALUATION OF THE	Question 1
CLASS SESSION 1 /	Which statement correctly describes the main difference onshore and
ASSESMENT	offshore wind turbines?
	1. Offshore wind turbines are generally larger and produce more
	electricity due to stronger and more consistent winds compared to
	onshore wind turbines.
	2. Onshore wind turbines are found on the sea while offshore wind
	turbines are found on land.
	3. Onshore wind turbines are more expensive to build and maintain
	than offshore wind turbines.
	Feedback
	1. Correct. Offshore wind turbines are generally larger and produce
	more electricity due to stronger and more consistent winds compared to onshore wind turbines.
	2. Incorrect. Onshore wind turbines are found on land while offshore
	wind turbines are found in the sea.
	3. Incorrect. Offshore wind turbines are more expensive to build and
	maintain than onshore wind turbines.
	Question 2
	Why is SketchUp an effective tool for learning about wind turbines?
	 They allow us to physically build wind turbines using real components.
	 They provide interactive virtual environments to simulate wind turbines.
	3. They offer theoretical explanations without practical application.
	Feedback
	 Incorrect. SketchUp does not involve physical components. Instead, it provides virtual environments for simulating wind turbines.
	2. Correct. SketchUp offers interactive virtual environments where we can simulate and manipulate wind turbines, aiding in understanding wind turbines practically.
	3. Incorrect. SketchUp is an interactive and provide practical simulations, not just theoretical explanations.
	Question 3
	What is the primary advantage of using the AR Case Study in learning about wind turbines?
	1. It provides hands-on experience with wind turbine components.
	2. It offers visual and interactive explanations of wind turbine
	concepts. 3. It focuses on theoretical discussions without practical application.
	Feedback

[
	 Incorrect. The AR Case Study does not involve physical components but rather provides visual and interactive explanations. Correct. The AR Case Study offers visual and interactive explanations of wind turbine concepts, enhancing understanding through engagement with augmented reality. Incorrect. The AR Case Study integrates practical visual and interactive elements, not just theoretical discussions.
CLASS SESSION 2	Engaging in Learning by Design Activities
CLASS SESSION GOAL(S)	Class session 2 aims to equip learners with skills and knowledge related to designing and analysing wind turbines. Learners will gain a deeper understanding of onshore and offshore wind turbines through hands-on design activities and simulations. They will learn how to apply their theoretical knowledge when constructing a wind turbine to generate electricity and relate their learning to real-life applications.
LEARNING OUTCOMES	 Upon completing the class session 2, the learners should be able to: Simulate the construction of wind turbines using SketchUp. Be aware of the elements and conditions needed for wind turbines to function.
LEARNING METHODS	 Interactive Simulations: Continue using SketchUp to allow learners to explore and refine their understanding of wind turbines through hands-on virtual experimentation. Learning by Design: Engage learners in designing and constructing wind turbines virtually through guided activities and experimentation. Discussion and Reflection: Facilitate group discussions to analyse predictions and observations made during simulation activities.
SCENARIO FOR LEARING:	Step 1 – Recap the Key Points (5 minutes):
	• Briefly review the key points learned in the previous class session.
	 Step 2 – Learning Activities (20 minutes): Engage in Learning by Design activities where learners will design and construct wind turbines using SketchUp
	 Step 3 – Reflection (5 minutes): Discuss in groups the predictions made and observations noted during the simulation activities. Reflect on how these observations align with theoretical knowledge. Step 4 – Real-life examples (10 minutes): Discuss real-life examples where wind turbines are used, reinforcing theoretical concepts with practical applications.
	Examples: Onshore Wind Turbines: Whitelee Wind Farm in Scotland - Largest onshore wind farm in the UK and one of the largest in Europe. It features 215 turbines that generate enough electricity to power over 350,000 homes. Offshore Wind Turbines:

REFERENCE MATERIALS	 Hornsea One Wind Farm in Yorkshire, UK – One of the world's largest offshore wind farm. It has 174 turbines generating up to 1.2 gigawatts (GW) of electricity, enough to power over one million homes. It is situated about 120 kilometres off the coast, making use of the strong and consistent winds in the North Sea. Step 5 – Wrap-Up and Discussion (5 minutes): Recap the key points learned about wind turbines. Encourage students to reflect on their learning experiences and ask questions. Slides summarizing key points from the first session and
/ BACKGROUND CONTENTS	 introducing new activities and examples SketchUp website for additional resources Videos describing how Wind Turbines work
EVALUATION OF THE	Question 1
EVALUATION OF THE CLASS SESSION 2 / ASSESMENT	 How does engaging in Learning by Design activities contribute to your understanding of wind turbines? 1. It reinforces theoretical concepts through practical application. 2. It excludes the use of simulations, focusing solely on theoretical discussions. 3. It limits your exploration of wind turbine behaviour.
	Feedback
	 Correct. Engaging in Learning by Design activities allows you to apply theoretical knowledge practically, enhancing your understanding of wind turbine behaviour. This is because Incorrect. Learning by Design activities involve practical application through simulations, not excluding them for theoretical discussions alone. This is because Incorrect. Learning by Design activities encourage exploration and application of wind turbine behaviour through simulations. This is because
	 Question 2 Why is it important for us to discuss real-life examples of wind turbines? 1. To relate theoretical knowledge to practical applications. 2. To avoid engaging in practical activities. 3. To limit our understanding of wind turbines.
	Feedback
	 Correct. Discussing real-life examples helps us relate theoretical knowledge to practical applications, reinforcing our understanding of wind turbines. This is because Incorrect. Discussing real-life examples enhances understanding by bridging theoretical knowledge with practical applications, rather than avoiding practical activities. This is because
	3. Incorrect. Discussing real-life examples expands understanding of wind turbines, rather than limiting it. This is because

1. 2.	ion 3 role do group discussions play in our learning about wind turbines? They hinder reflection on simulation results. They encourage collaboration and deeper understanding. They limit interaction with SketchUp.
2.	Pack Incorrect. Group discussions actually encourage reflection on simulation results, fostering deeper understanding. Correct. Group discussions promote collaboration and deeper understanding of wind turbines by sharing insights and reflections on simulation activities. Incorrect. Group discussions complement interaction with SketchUp by providing opportunities for reflection and collaborative learning.

4.4. Module no 4: Earthquake Resistant Buildings

MODULE TITLE	Comprehending the Building Resistance to Earthquakes
MODULE GOAL(S)	The module aims to equip learners with skills and knowledge related to understanding the basic principles of building construction regarding earthquake resistance. Learners will gain a deeper understanding of the basic building elements and properties which influence their resistance to earthquakes and how buildings react to diverse types of earthquakes. They will learn a simple and basic formula to calculate building resistance under earthquake situations. They will learn to adapt their theoretical knowledge to practical applications by analysing different situations of earthquakes and building reactions. They will transform their knowledge into daily life practices by designing buildings under given boundary conditions. The module will help learners acquire the competencies necessary to contribute to designing and evaluating simple earthquake- resistant buildings.
LEARNING AUDIENCE	• Educators and teachers responsible for instructing gifted students aged 12-15 years old.
LEARNING OUTCOMES	 Upon completing the Module, the learners should be able to: Explain basic building elements and construction structures; Explain the factors that influence the building strength and building resistance to earthquakes; Comprehend a basic and simple formula which is used to estimate building resistance; Apply a basic and simple formula which to calculate building reactions under diverse earthquake conditions; Design earthquake-resistant buildings using the simple formula and digital applications.

The main learning method will be "learning by design" which engages four
steps.
 Situate Practice: Learners will explore diverse types of building constructions, earthquake types, and building reactions without taking any instruction. In this phase, learners will use the Augmented Reality (AR) tool to situate the experience environment. Overt Instruction: In this phase, learners will watch an instruction video shown by the AR tool. Learners will be explicitly informed about the basic principles of building resistance to earthquakes. They will be introduced to a basic simple formula to calculate building resistance to earthquakes. Critical Framing: Learners will be given different building types and earthquake conditions within the AR tool. They will use the knowledge that they comprehended in the previous steps to analyse and evaluate resistance of buildings in given conditions. Transformed Practice: Learners will be given with a scenario based on the real life situations. They are expected to design buildings which will be expected to resist earthquakes under given conditions. They will make decision for the best solution and design buildings using a digital design tool.
 Discussion and Presentation: Learners will present their designs, and other students will discuss the solutions.
Two (2) class periods (45 minutes each)
 Computers or tablets with internet access for accessing AR Tool (ZAPPAR) and digital design tool (SKETCHUP) Projection equipment or screens for displaying the AR Case Study on Electrical Circuits. Access to the AR Case Study 4 (Earthquake Resistant Buildings) developed earlier in the project for the theoretical introduction. Access to the Toolkit Introduction videos Learning By Design and SketchUp Tool: <u>https://www.youtube.com/watch?v=UzvBKjDxUJ4</u> Tutorial for SketchUp Tool <u>https://www.youtube.com/watch?v=rrKxqpSrRPY</u> Additional classroom materials such as pens, paper, and whiteboards for group discussions and activities. SKETCHUP application to design buildings.
Introduction to Series and Parallel Circuits
Class session 1 provides learners with a comprehensive understanding of building construction/design and earthquake resistance .Learners will gain insight into the fundamental concepts and principles of building elements, and their features. They will be taught a basic simple formula to calculate earthquake resistance of buildings. They will also become

	acquiring the knowledge and skills necessary to analyse and evaluate
	resistance of different building under different earthquake cases.
LEARNING OUTCOMES	Upon completing the class session 1, the learners should be able to:
	• Recognize reactions of different buildings under different
	earthquake cases using ZAPPAR AR tools.
	• Explain basic building elements and construction structures;
	• Explain the factors that influence the building strength and
	building resistance to earthquakes;
	• Comprehend a basic and simple formula which is used to estimate
	building resistance;
	 Apply a basic and simple formula calculate building reactions
	under diverse earthquake conditions.
LEARNING METHODS	The main learning methods will be the first three "learning by design".
	• Situate Practice: Learners will explore diverse types of building
	constructions, earthquake types, and building reactions without
	taking any instruction. In this phase, learners will use the
	Augmented Reality (AR) tool to situate the experience environment.
	• Overt Instruction: In this phase, learners will watch an instruction
	video shown by the AR tool. Learners will be explicitly informed
	about the basic principles of building elements that affect building
	resistance to earthquakes. They will be introduced to a basic
	simple formula to calculate building resistance to earthquakes.
	• Critical Framing: Learners will be given different building types
	and earthquake conditions within the AR tool. They will use the
	knowledge that they comprehended in the previous steps to
	analyse and evaluate resistance of buildings in given conditions.
SCENARIO FOR LEARING:	Step 1 – Experiencing the Earthquakes with AR (15 minutes):
	• Students will be given AR Case Study Flyers. In this step students
	will be given the first flyer and tablets.
	• Students will experience the AR content that includes 9 cases of
	earthquakes and buildings.
	Students will discuss the given questions.
	Step 2 – Watching instruction videos with AR (15 minutes):
	Learning Video (10 minutes):
	2. Learners will be given second flyer of AR Cases.
	3. Learners will access the instruction video and watch:
	https://www.youtube.com/watch?v=-UxyIhn0A5w&t=41s
	4. Learners will take notes during the video instruction.
	Step 3 – Analysing and Evaluating (10 minutes):
	• Learners will be given AR Case Flyer 3.
	• Learners will analyse and evaluate given 3 cases of earthquakes
	and buildings. They will calculate building resistance and strength
	of building elements using the information and basic formula
	given in the second step.
	• Students will share their solutions with each other.

	Chan 4 Mann Ha and Discussion (Emission)
	Step 4 – Wrap-Up and Discussion (5 minutes):
	• Recap the key points learned about earthquake resistant
	buildings
	• Encourage students to reflect on their learning experiences and
	ask questions.
REFERENCE MATERIALS /	• AR Case Study on Earthquake Resistant Buildings (Pages 1, 2, 3)
BACKGROUND	 Toolkit Introduction Videos ("Learning by Design and the
CONTENTS	SKETCHUP Tool", "Tutorial for SKETCHUP Tool")
	• SKETCHUP digital design tool website for additional resources
EVALUATION OF THE	Question 1
CLASS SESSION 1 /	According to your experience from the animations, what do you think are
ASSESMENT	the factors affecting the earthquake resistance of buildings? Write it
	down.
	Question 2
	Why are AR tools effective for learning about factors that influence the
	resistance of buildings against earthquakes?
CLASS SESSION 2	DESIGNING EARTHQUAKE RESISTANT BUILDINGS
CLASS SESSION GOAL(S)	Class session 2 aims to support learner transform their knowledge into
	practical applications. In this aim, they will be given a scenario in which
	they will design earthquake resistant building using SKETCHUP digital
	design tool.
LEARNING OUTCOMES	Upon completing the class session 2, the learners should be able to:
	 Estimate the best design options by doing calculations.
	• Design earthquake-resistant buildings using the simple formula
	and digital applications.
LEARNING METHODS	• Transformed Practice: Learners will be given with a scenario
	based on the real life situations. They are expected to design
	buildings which will be expected to resist earthquakes under given
	conditions. They will make decision for the best solution and
	design buildings using a digital design tool. They will create
	designs individually.
	• Discussion and Presentation: Students will present their building
	designs. Group discussion will be done to evaluate effectiveness of
	designs.
SCENARIO FOR LEARING:	Step 1 – Introduction (5 minutes):
	• Learners are given the 4 th Flyer of AR Case Study 4. The teacher
	briefly explains the scenario and asked question.
	Step 2 – Creating the best scenario (10 minutes):
	• Learners individually work and calculate the best option (best
	profit) for designing buildings. Learners decide the best for their
	own.
	Step 3 – Designing (15 minutes):
	 Learners log in to the SKETCUP design tool.
	• Learners design buildings according to the calculations made in
	the previous step.
	• Learners take a screenshot or save their designs for presentations.

	Step 4 – (Presentation and Discussion (10 minutes):				
	Learne	ers present and	claim their de	esigns and calc	ulations.
	Other	learners give fe	edback and c	omments to de	esigns.
REFERENCE MATERIALS /		4 of AR Case St			
BACKGROUND	• Pen an	nd paper			
CONTENTS	• SKETCHUP digital design tool.				
EVALUATION OF THE	Question				
CLASS SESSION 2 / ASSESMENT	You're a contractor. That is, you are a person who builds and sells houses.				
	When you bui	່ໄd a house, you	ı build and sei	l houses withi	n the framewor
	of certain lege	al responsibiliti	ies and condit	ions. You also	need to make
	profit.				
				•	ment building o
				onditions are	as follows whe
	-	ise on this land			
		lget to build the			uild houses of a
			-		uild houses of 8 wilding with or
				•	tion you need t
		e building the h		•	•
		tment costs and	5		
	Apartment	T.	1 Floor Cost	Roof Cost	1 Apartment
		Cost			
					Flat Sale Price
	80 m²	20.000 EU	80.000 EU	40.000 EU	120.000 EU
	80 m² 100 m²		80.000 EU 100.000 EU	40.000 EU 50.000 EU	
		20.000 EU			120.000 EU
	100 m² 120 m²	20.000 EU 20.000 EU 20.000 EU	100.000 EU 120.000 EU	50.000 EU 60.000 EU	150.000 EU
	100 m² 120 m²	20.000 EU 20.000 EU 20.000 EU erial weight and	100.000 EU 120.000 EU	50.000 EU 60.000 EU	120.000 EU 150.000 EU 180.000 EU
	100 m² 120 m² Table 2: Mate	20.000 EU 20.000 EU 20.000 EU erial weight and t 1 Column	100.000 EU 120.000 EU	50.000 EU 60.000 EU	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment
	100 m² 120 m² Table 2: Mate the apartmen	20.000 EU 20.000 EU 20.000 EU erial weight and t	100.000 EU 120.000 EU d column stre	50.000 EU 60.000 EU ngth informati	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment
	100 m² 120 m² Table 2: Mate the apartmen Apartment	20.000 EU 20.000 EU 20.000 EU erial weight and t t 1 Column Cost	100.000 EU 120.000 EU d column strea 1 Floor Cost	50.000 EU 60.000 EU ngth informati Roof Cost	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment Flat Sale Price
	100 m ² 120 m ² Table 2: Mate the apartment Apartment 80 m ²	20.000 EU 20.000 EU 20.000 EU erial weight and t 1 Column Cost 20.000 EU	100.000 EU 120.000 EU d column stre 1 Floor Cost 80.000 EU	50.000 EU 60.000 EU ngth informati Roof Cost 40.000 EU	120.000 EU 150.000 EU 180.000 EU ion to be used a 1 Apartment Flat Sale Price
	100 m ² 120 m ² Table 2: Mate the apartment Apartment 80 m ² 100 m ² 120 m ²	20.000 EU 20.000 EU 20.000 EU erial weight and t Cost 20.000 EU 20.000 EU 20.000 EU	100.000 EU 120.000 EU d column stre 1 Floor Cost 80.000 EU 100.000 EU 120.000 EU	50.000 EU 60.000 EU ngth informati Roof Cost 40.000 EU 50.000 EU 60.000 EU	120.000 EU 150.000 EU 180.000 EU ion to be used 1 Apartment Flat Sale Price 120.000 EU 150.000 EU
	100 m ² 120 m ² Table 2: Mate the apartment Apartment 80 m ² 100 m ² 120 m ²	20.000 EU 20.000 EU 20.000 EU erial weight and t 1 Column Cost 20.000 EU 20.000 EU 20.000 EU t buildings you	100.000 EU 120.000 EU d column stre 1 Floor Cost 80.000 EU 100.000 EU 120.000 EU	50.000 EU 60.000 EU ngth informati Roof Cost 40.000 EU 50.000 EU 60.000 EU	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment Flat Sale Price 120.000 EU 150.000 EU
	100 m ² 120 m ² Table 2: Mate the apartment Apartment 80 m ² 100 m ² 120 m ² The apartment of at least 9 N	20.000 EU 20.000 EU 20.000 EU erial weight and t 20.000 EU 20.000 EU 20.000 EU 20.000 EU 20.000 EU W.	100.000 EU 120.000 EU d column stre 1 Floor Cost 80.000 EU 100.000 EU 120.000 EU will build mus	50.000 EU 60.000 EU ngth informati Roof Cost 40.000 EU 50.000 EU 60.000 EU t be resistant t	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment Flat Sale Price 120.000 EU 150.000 EU 180.000 EU to an earthquak
	100 m ² 120 m ² Table 2: Mate the apartment Apartment 80 m ² 100 m ² 120 m ² The apartment of at least 9 N Under these c	20.000 EU 20.000 EU 20.000 EU erial weight and t 20.000 EU 20.000 EU 20.000 EU 20.000 EU t buildings you W. onditions, calcu	100.000 EU 120.000 EU d column stre 1 Floor Cost 80.000 EU 100.000 EU 120.000 EU will build mus	50.000 EU 60.000 EU ngth informati Roof Cost 40.000 EU 50.000 EU 60.000 EU t be resistant t	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment Flat Sale Price 120.000 EU 150.000 EU
	100 m ² 120 m ² Table 2: Mate the apartment Apartment 80 m ² 100 m ² 120 m ² The apartment of at least 9 N Under these of the houses you	20.000 EU 20.000 EU 20.000 EU erial weight and t 1 Column Cost 20.000 EU 20.000 EU 20.000 EU 20.000 EU t buildings you W. onditions, calcu	100.000 EU 120.000 EU d column strea 1 Floor Cost 80.000 EU 100.000 EU 120.000 EU will build muss ulate the moss in the SKETCH	50.000 EU 60.000 EU ngth informati Roof Cost 40.000 EU 50.000 EU 60.000 EU t be resistant t t profitable sit	120.000 EU 150.000 EU 180.000 EU ion to be used i 1 Apartment Flat Sale Price 120.000 EU 150.000 EU 180.000 EU to an earthquak

4.5. Module no 5: Three-dimensional Geometry

MODULE TITLE

Three-dimensional Geometry

MODULE GOAL(S)	The module aims to equip students with skills and knowledge related to
	three-dimensional geometry. Students will gain a thorough understanding of the fundamental concepts of volume, surface area and
	the properties of three-dimensional shapes. They will learn to apply
	theoretical knowledge to practical applications through the construction
	and analysis of 3D models. The module will help students acquire the skills necessary to contribute to the design and evaluation of effective spatial
	configurations.
LEARNING AUDIENCE	Educators and teachers responsible for instructing students aged
	8-11 years old.
LEARNING OUTCOMES	On completion of the module, students should be able to:
	 Explain the concepts of volume and surface area in three- dimensional shapes.
	 Construct three-dimensional models of basic geometric shapes using simulations and physical materials.
	 Analyse and compare the properties of different three- dimensional shapes.
	 Apply concepts of three-dimensional geometry to real-world
	problems.
LEARNING METHODS	• Direct Instruction: Use of case studies and simulations to
	introduce three-dimensional geometry concepts.
	• Interactive Simulations: Use of simulations to allow students to
	construct and manipulate three-dimensional models.
	• Design-Based Learning : Engaging students in the design and construction of 3D models through guided activities and
	experimentation.
	 Video-Based Learning: Use of educational videos (Geogebra tool) to demonstrate practical applications and tips for using simulation
	tools effectively.
	• Discussion and Reflection : Facilitate group discussions to analyse
	predictions and observations made during simulation activities.
DURATION:	Two (2) class periods (45 minutes each)
TOOLS NEEDED:	• Computers or tablets with internet access to access simulations.
	 Projection equipment or screens to show case studies and
	simulations.
	 Model building materials such as paper, scissors, tape and glue. Access to advectional videos on three dimensional accmetry and
	 Access to educational videos on three-dimensional geometry and simulations.
CLASS SESSION 1	Introduction to Three-dimensional Geometry
CLASS SESSION GOAL(S)	To provide students with a comprehensive understanding of the concepts
	of volume and surface area in three-dimensional shapes. To familiarise
	students with the practical use of these concepts through simulations and model building.
LEARNING OUTCOMES	Upon completing the class session 1, the learners should be able to:

	 Understand the fundamental concepts of volume and surface area.
	• Explain how the volume and surface area of three-dimensional shapes are calculated using case studies and simulations.
LEARNING METHODS	Construct three-dimensional models of basic geometric shapes.
LEARNING METHODS	• Direct Instruction: Use of the AR Case Study to introduce concepts of volume and surface area.
	 Interactive Simulations: Use of simulations to allow students to build and manipulate three-dimensional models.
	• Video-Based Learning: Use of educational videos to demonstrate
	practical applications and tips for using simulation tools effectively.
	• Discussion and Reflection: Facilitating group discussions to
	analyse predictions and observations made during simulation
	activities.
SCENARIO FOR LEARING:	Step 1 – Introduction (10 minutes):
	• Use of the AR Case Study based on Geogebra to introduce the
	concepts of volume and surface area.
	 Emphasise the importance of these concepts in three-dimensional
	geometry.
	Step 2 – Simulations of three-dimensional models (30 minutes):
	 Learning Video (10 minutes):
	1. Watch introductory videos on how to use simulations to learn
	about 3D geometry: ("Learning by Design and the Geogebra tool" and "Tutorial for Geogebra").
	• Quests-Tasks (20 minutes):
	1. Access simulations on a computer or tablet.
	2. Build three-dimensional models of geometric figures within
	the simulation environment.
	3. Compare the properties of these figures in terms of volume and surface area.
	Step 3 – Wrap-Up and Discussion (5 minutes):
	• Recap the key points learned about three-dimensional geometry.
	• Encourage students to reflect on their learning experiences and
	ask questions.
REFERENCE MATERIALS	AR Case study on three-dimensional geometry.
/ BACKGROUND	• Educational videos on simulation tools and three-dimensional
CONTENTS	geometry.
	 Interactive simulations website for additional resources.
EVALUATION OF THE	Question 1
CLASS SESSION 1 / ASSESMENT	What is the main difference between volume and surface area in three- dimensional shapes?
	A) Volume measures the amount of space an object occupies, while
	surface area measures the size of the object's outer faces.

	B) Volume refers only to the base of a three-dimensional object, while
	surface area refers only to the height of the object.
	C) Volume is measured in linear units, while surface area is measured in
	cubic units.
	D) Volume and surface area are always equal for any three-dimensional
	shape.
	Feedback
	A) Correct
	B) Incorrect
	C) Incorrect
	D) Incorrect
	Question 2
	Why are simulations effective for learning about three-dimensional
	geometry?
	A) They allow us to observe how shadows of 3D objects are formed.
	B) They provide interactive virtual environments to simulate the
	behaviour of 3D models.
	C) They help memorise geometric formulae more quickly.
	D) They reduce the need to study basic geometry
	b) mey reduce the need to study busic geometry.
	Feedback
	A) Incorrect
	B) Correct
	C) Incorrect
	D) Incorrect
	Question 3
	What is the main advantage of using case studies in learning three-
	dimensional geometry?
	A) They allow practice in solving complex equations repetitively.
	B) They help to remember exact geometric definitions.
	C) They provide visual and interactive explanations of concepts,
	enhancing understanding through interaction with augmented reality.
	D) They ensure that students only focus on theory without practical
	applications.
	Feedback
	A) Incorrect
	B) Incorrect
	C) Correct
	D) Incorrect
CLASS SESSION 2	Engaging in Learning by Design Activities
	Engaging in Leanning by Design Activities

CLASS SESSION GOAL(S)	To equip students with skills and knowledge related to the design and analysis of three-dimensional models. Students will gain a deeper understanding of the concepts of volume and surface area through hands- on design activities and simulations. They will learn to apply their theoretical knowledge to predict the impact of changes in spatial configurations and relate their learning to real-world applications.
LEARNING OUTCOMES	 Upon completing the class session 2, the learners should be able to: Construct three-dimensional models using simulations. Compare the properties of different three-dimensional shapes in terms of volume and surface area. Apply three-dimensional geometry concepts to real-world problems.
LEARNING METHODS	 Interactive Simulations: Continue to use simulations to allow students to explore and refine their understanding of the behaviour of 3D models through hands-on experimentation. Design-Based Learning: Engage students in the design and construction of 3D models through guided activities and experimentation. Discussion and Reflection: Facilitate group discussions to analyse predictions and observations made during simulation activities.
SCENARIO FOR LEARING:	 Step 1 – Recap the Key Points (5 minutes): Briefly review the key points learned in the previous class session.
	• If necessary, see again the Toolkit Introduction Videos (Geogebra)
	Step 2 – Learning Activities (20 minutes):
	 Participate in design-based learning activities where students will design and build three-dimensional models using simulations.
	 students can be grouped together to help one another
	Step 3 – Reflection (5 minutes):
	• Discuss in groups the predictions and observations noted during
	 the simulation activities. Reflect on how these observations align with theoretical
	knowledge.
	Step 4 – Real-life examples (10 minutes):
	 Discuss real-world examples where three-dimensional models are used, reinforcing theoretical concepts with practical applications.
	Examples: Architecture and Construction:
	• Building Design: Architects use 3D models to design buildings, evaluate their structure and aesthetics, and perform simulations of how they will look once built.
	Medicine:
	 Prostheses and Orthoses: Customised 3D models are designed and manufactured to create prostheses and orthoses that perfectly fit patients' needs.
	Engineering:

	Product Design: Engineers use 3D modelling software to design
	and prototype products, from automobiles to electronic devices.
	Step 5 – Wrap-Up and Discussion (5 minutes):
	Recap the key points learned about three-dimensional geometry.
	 Encourage students to reflect on their learning experiences and ask questions.
REFERENCE MATERIALS	 Slides summarising the key points of the first session and
/ BACKGROUND	presenting new activities and examples.
CONTENTS	• Interactive simulations website for additional resources.
	Real-world examples of three-dimensional models.
EVALUATION OF THE	Question 1
CLASS SESSION 2 /	How do the Design-Based Learning activities contribute to you
ASSESMENT	understanding of three-dimensional geometry?
	A) They allow you to avoid common errors in geometric calculations.
	<i>B)</i> They reinforce theoretical concepts through practical application.
	C) They facilitate the memorisation of geometric formulae.
	D) They simplify the complexity of three-dimensional models by reducin
	them to two dimensions.
	Feedback
	A) Incorrect
	B) Correct
	C) Incorrect
	D) Incorrect
	Question 2
	Why is it important to discuss real-world examples of three-dimension
	models?
	A) To improve the accuracy of theoretical calculations.
	B) To relate theoretical knowledge to practical applications.
	C) To focus only on abstract mathematical properties.
	D) To avoid the use of technology in learning.
	Feedback
	A) Incorrect
	B) Correct
	C) Incorrect
	D) Incorrect
	Question 3
	What role do group discussions play in our learning about three dimensional geometry?
	A) They allow each student to work independently without distraction. B) They encourage collaboration and deeper understanding.

B) They encourage collaboration and deeper understanding.

C) They ensure that all students reach the same conclusions without questioning. D) They prevent the exploration of different perspectives and solution methods.
Feedback
A. Incorrect
B. Correct
C. Incorrect
D. Incorrect

4.6. Module no 6: Exploring Geometric Shapes and Measurement

MODULE TITLE	Understanding Geometric Shapes and Measurement through AR and Simulations
MODULE GOAL(S)	This module aims to equip learners with skills and knowledge related to understanding geometric shapes and measurement in Math. Learners will gain a deeper understanding of two-dimensional geometric shapes and the concepts of area and perimeter and how to creatively integrate this knowledge through technology-enhanced learning tools. The module will help learners integrate theoretical mathematics with interactive technological tools to enhance their problem-solving abilities and computational thinking.
LEARNING AUDIENCE	• Educators and teachers are responsible for instructing students aged 8-11 years.
LEARNING OUTCOMES	 Upon completing the Module, the learners should be able to: Explain the properties of two-dimensional geometric shapes, including their surfaces, angles, and boundary lines. Define area as the space inside a boundary and perimeter as the distance around it. Calculate the area and perimeter of 2D shapes. Use interactive technological tools to explore and visualise geometric concepts.
LEARNING METHODS	 Direct Instruction: Use the AR Case Study 6 (AR Math Adventure: Exploring Geometric Shapes and Measurement) to introduce concepts of two-dimensional geometric shapes and area and perimeter. Interactive Simulations: Use a QR code to allow learners to simulate and learn the relationship between a square and an isosceles right triangle. Learning by Design: Engage learners in designing and constructing a fictional game with imaginary characters and obstacles to explore the concepts of area and perimeter, using mathematical knowledge and problem-solving skills.

Γ	- Mide Deced Less des lies in the initial difference
DURATION:	 Video-Based Learning: Use instructional videos ("Learning by Design and Sprite Lab tool" and "Tutorial for Sprite Lab Tool") to demonstrate practical applications and tips for using Sprite Lab simulations effectively. Discussion and Reflection: Facilitate group discussions to analyse the predictions and observations made during the creations. Two (2) class periods (45 minutes each)
TOOLS NEEDED:	 Computers or tablets with internet access for accessing simulations. Projection equipment or screens for displaying the AR Case Study on Geometric Shapes and Measurement. Access to the AR Case Study 6 (Math Adventure: Exploring Geometric Shapes and Measurement). Access to Spritelab (<u>https://code.org/educate/spritelab/</u>) and to instructional videos.
CLASS SESSION 1	Introduction to Geometric Shapes and Measurement
CLASS SESSION GOAL(S)	Class session 1 gives learners a brief understanding of geometric shapes and measurement. Learners will gain insight into two-dimensional geometric shapes and the concepts of area and perimeter. They will also become familiar with calculating the area and perimeter of 2D shapes.
LEARNING OUTCOMES	 Upon completing the class session 1, the learners should be able to: Recognise examples of 2D shapes. Understand the fundamental concepts of area and perimeter. Explain how the area and perimeter of two-dimensional shapes are calculated using case studies and simulations. Understand the relationship between a square and an isosceles right triangle.
LEARNING METHODS	 Direct Instruction: Use the AR Case Study to introduce concepts of geometric shapes and their surfaces, angles, and boundary lines. Interactive Simulations: Use simulations to help learners calculate the area and perimeter of 2D shapes. Discussion and Reflection: Facilitate group discussions based on students' observations.
SCENARIO FOR LEARING:	 Step 1 – Introduction (15 minutes): Use the AR Case Study on geometric shapes and their surfaces, angles, and boundary lines. Give examples of 2D shapes and ask the students to find these shapes in their everyday lives. Let the students observe how many surfaces, angles, and boundary lines have each 2D shape. Introduce the concepts of the area and perimeter of 2D shapes and how to calculate them.
	Step 2 – Educational exercises (20 minutes):
	 Let students scan the code to learn the relationship between a square and an isosceles right triangle.

	 Discuss how two isosceles and right triangles can form a square when combined, illustrating the geometric relationship and properties. Let students scan the code of the AR-based quiz to test their
	knowledge of square measurements.
	Step 3 – Wrap-Up and Discussion (10 minutes):
	 Recap the key points learned about geometric shapes and measurement.
	 Encourage students to reflect on their learning experiences and
	ask questions.
REFERENCE MATERIALS	 AR Case Study on Geometric shapes and measurement (Pages 1,
/ BACKGROUND	
CONTENTS	2, 3) Toolkit Introduction Videos ("Learning by Design and Sprite Leb
CONTENTS	• Toolkit Introduction Videos (" <u>Learning by Design and Sprite Lab</u>
	tool" and " <u>Tutorial for Sprite Lab Tool</u> ")
EVALUATION OF THE	Question 1
CLASS SESSION 1 /	Which of the following is an example of a two-dimensional geometric
ASSESMENT	shape?
	1. Sphere
	2. Square
	3. Cube
	Feedback
	1. Incorrect. A sphere is three-dimensional because it has volume and
	extends in all directions from its centre.
	2. Correct. A square is a two-dimensional shape because it only has
	length and width, lying flat on a plane without depth.
	3. Incorrect. A cube is a three-dimensional shape with depth.
	Question 2
	What is the difference between area and perimeter for 2D shapes?
	1. Area measures the distance around the shape, while perimeter measures the space inside the shape.
	2. Area and perimeter both measure the space inside the shape.
	3. Area measures the space inside the shape, while perimeter
	measures the distance around the shape.
	Feedback
	 Incorrect. This choice reverses the definitions of area and perimeter.
	 Incorrect. Area and perimeter measure different aspects of a shape: area measures the internal space, while perimeter measures the boundary length.
	<i>3.</i> Correct. Area refers to the space contained within the boundaries
	of a shape, while perimeter refers to the total distance around the
	outside of the shape.
	Question 3

	How do you calculate the area and perimeter of a square with a side
	length of 6 units?
	1. Area = 12 square units, Perimeter = 18 units
	2. Area = 36 square units, Perimeter = 24 units
	3. Area = 24 square units, Perimeter = 36 units
	Feedback
	 Incorrect. This calculation does not use the correct formulas for area and perimeter of a square. Area should be (side) × (side) and perimeter should be 4 × side.
	 Correct. The area of a square with a side length of 6 units is calculated as (6 × 6) = 36 square units, and the perimeter is calculated as (4 × 6) = 24 units.
	3. Incorrect. This reverses the correct calculations for area and
	perimeter.
CLASS SESSION 2	Engaging in Learning by Design Activities
CLASS SESSION GOAL(S)	Class Session 2 aims to equip learners with skills and knowledge related
	to designing two-dimensional models. Students will gain a deeper understanding of geometric shapes, their surfaces, angles, and boundary lines, as well as the concepts of area and perimeter through hands-on
	design activities and simulations. They will learn to apply their theoretical knowledge effectively.
LEARNING OUTCOMES	Upon completing the class session 2, the learners should be able to:
	 Construct fictional game with imaginary characters and obstacles to navigate the concepts of area and perimeter.
	 Compare the properties of different two-dimensional shapes in terms of area and perimeter.
	• Learn how to use Sprite Lab tool.
LEARNING METHODS	 Video-Based Learning: Use of educational videos to demonstrate practical applications and tips for using tools effectively. SpriteLab tool: Use the tool to enable students to design a game that strategically incorporates the concepts of area and perimeter in relation to 2D shapes.
	• Discussion and Reflection: Facilitate group discussions to analyse
	predictions and observations made during activities.
SCENARIO FOR LEARING:	Step 1 – Recap the Key Points (5 minutes):
	• Briefly review the key points learned in the previous class session.
	Step 2 – Learning Activities (30 minutes):
	• Students can be grouped to help each other.
	• Engage in Learning by Design activities where learners will design
	a game that strategically incorporates the concepts of area and
	perimeter about 2D shapes using the Sprite Lab tool.
	Step 3 – Presentation and discussion (10 minutes):
	 Each team picks one person to represent their game in front of the
	class.
	 Encourage students to reflect on what they have learned and
	summarise the lessons.

REFERENCE MATERIALS	• Slides summarising key points from the first session.		
/ BACKGROUND	• Toolkit Introduction Videos (" <u>Learning by Design and Sprite Lab</u>		
CONTENTS	<u>tool</u> " and " <u>Tutorial for Sprite Lab Tool</u> ")		
	Sprite Lab tool.		
EVALUATION OF THE	Question 1		
CLASS SESSION 2 /	How do the Design-Based Learning activities contribute to your		
ASSESMENT	understanding of 2-dimensional geometry?		
	1. They allow you to apply geometric concepts in creative and		
	practical ways.		
	2. They help you memorise formulas for area and perimeter.		
	3. They focus on competitive gaming skills.		
	Feedback:		
	1. Correct. Design-based learning activities encourage students to		
	use their knowledge of 2-dimensional geometry to create and		
	explore, enhancing understanding through hands-on application.		
	2. Incorrect. While memorisation can be part of learning, Design-		
	Based Learning focuses more on application and understanding		
	than rote memorisation.		
	3. Incorrect. The emphasis is on learning and applying geometry		
	concepts, not on competition.		
	Question 2		
	How does working in teams enhance your learning experience in Design-		
	Based Learning activities?		
	1. It allows you to delegate all tasks to others.		
	2. It fosters collaboration and idea-sharing to solve complex		
	problems.		
	3. It ensures that only one person's ideas are used.		
	Feedback:		
	1. Incorrect. Teamwork is about collaboration and shared effort, not		
	simply passing tasks to others.		
	<i>2. Correct. Working in teams encourages students to combine their</i>		
	strengths and perspectives, leading to more effective problem-		
	solving and a deeper understanding of concepts.		
	<i>3. Incorrect. Effective teamwork involves considering multiple</i>		
	viewpoints and integrating diverse ideas for the best outcomes.		
	Question 3 What role do aroun discussions play in lograting about accomptris shapes		
	What role do group discussions play in learning about geometric shapes		
	and measurement?		
	1. They allow you to listen passively without contributing.		
	2. They are used to present memorized definitions without further		
	exploration.		
	3. They provide opportunities to clarify misunderstandings and		
	deepen understanding through peer explanations.		
	Feedback:		
	1. Incorrect. Effective group discussions require active participation		
	and sharing of ideas.		

2.	Incorrect.	Discussions	should	go	beyond	memorisation,
	encouragin	ng exploration	and appli	catio	n of conce	pts.
3.	Correct. Gr	oup discussior	ns encour	age s	tudents to	articulate their
	understand	ding, ask que	estions, d	and	learn froi	m each other,
	enhancing	comprehen	sion of	; g	eometric	shapes and
	measurem	ent.				

4.7. Module no 7: Virtual Art Gallery

MODULE TITLE	Exploring Art through Virtual Galleries and Digital Tools
MODULE GOAL(S)	The module aims to equip learners with skills and knowledge related to designing and implementing engaging virtual art gallery projects. Learners will gain a deeper understanding of how virtual art galleries can enhance student learning and engagement by integrating arts and technology. They will learn how to adapt to using Tinkercad for creative STEAM education, effectively combining digital tools with artistic expression. The module will help learners acquire the competencies necessary to contribute to innovative educational practices, fostering creativity and technical proficiency in the classroom.
LEARNING AUDIENCE	• Educators and teachers responsible for instructing students aged 12-15 years old.
LEARNING OUTCOMES	 Upon completing the Module, the learners should be able to: Confidently use Tinkercad to create digital art, 3D models, and virtual gallery experiences. Design a virtual art gallery layout and curate a collection of student-created artwork. Develop lesson plans that integrate virtual art gallery creation into their existing curriculum. Assess student learning and engagement in virtual art gallery projects.
LEARNING METHODS	 Direct Instruction: Use of the AR Case Study 7 (Virtual Art Exhibition Event) to introduce concept of the virtual art and art exhibition. Interactive Design: Use Tinkercad to allow learners to design and curate virtual art galleries. Learning by Design: Engage learners in creating digital art pieces and gallery layouts through guided activities and creative exploration. Video-Based Learning: Use instructional videos ("Learning by Design and the Tinkercad Tool" and "Tutorial for Tinkercad Tool") to provide practical guidance on using Tinkercad tool in creating art. Discussion and Reflection: Facilitate group discussions to explore the potential of virtual galleries in art education and student engagement.

DURATION:	Two (2) class periods (45 minutes each)			
TOOLS NEEDED:	 Computers or tablets with internet access for accessing Tinkercaa simulations. Projection equipment or screens for displaying the AR Case Study on Virtual Art Exhibition Event. Access to the AR Case Study 7 (Virtual Art Exhibition Event) developed earlier in the project for theoretical introduction. Access to the Toolkit Introduction videos ("Learning by Design and the Tinkercad Tool" and "Tutorial for Tinkercad Tool"). Additional classroom materials such as colourful pens, paper, and whiteboards for group discussions and activities. 			
CLASS SESSION 1	Introduction to Virtual Art Galleries with Tinkercad			
CLASS SESSION GOAL(S)	Class session 1 provides learners with a comprehensive understanding of how to use Tinkercad to create virtual art galleries. Learners will gain insight into the fundamental concepts and tools within Tinkercad that allow them to design virtual art spaces and curate collections of artwork.			
LEARNING OUTCOMES	 Upon completing class session 1, the learners should be able to: Understand the basic features of Tinkercad for creating digital art and galleries. Design a simple virtual gallery layout using Tinkercad. Curate a collection of student-created artwork within a virtual gallery. 			
LEARNING METHODS	 Direct Instruction: Introduce Tinkercad and its features for virtual gallery creation. Interactive Design: Use Tinkercad to design virtual gallery spaces and curate collections. Video-Based Learning: Use instructional videos ("Learning by Design and the Tinkercad Tool" and "Tutorial for Tinkercad Tool") to provide practical guidance on using Tinkercad tool in creating art. Discussion and Reflection: Facilitate group discussions to explore the potential of virtual galleries in art education. 			
SCENARIO FOR LEARING:	Step 1 – Introduction (10 minutes):			
	 Use the AR Case Study on Virtual Art Exhibition Event to introduce the concept of the virtual art and art exhibitions. Discuss the educational benefits of virtual galleries. 			
	Step 2 – Creating Virtual Art with Tinkercad (30 minutes):			
	 Learning Video (10 minutes): Watch the Introduction videos ("Learning by Design and the <u>Tinkercad Tool</u>" and "<u>Tutorial for Tinkercad Tool</u>") to understand its features. Quests-Tasks (20 minutes): Tinkercad Tool 			
	1. Access Tinkercad simulations on a computer or tablet.			

	2. Use Tinkercad to create a simple virtual gallery space.
	3. Experiment with different design elements to curate a
	collection of artwork.
	Step 3 – Wrap-Up and Discussion (5 minutes):
	Recap the key points learned about Tinkercad and virtual art
	galleries.
	• Encourage students to reflect on their learning experiences and
	ask questions.
REFERENCE MATERIALS	 AR Case Study on Virtual Art Exhibition Event (Pages 1, 2, 3)
/ BACKGROUND	 Toolkit Introduction Videos ("Learning by Design and the
CONTENTS	
	<u>Tinkercad Tool</u> " and " <u>Tutorial for Tinkercad Tool</u> ")
	Tinkercad website for design resources
EVALUATION OF THE	Question 1
CLASS SESSION 1 / ASSESMENT	What is a primary benefit of using Tinkercad for creating virtual art
ASSESIVIEINI	galleries?
	1. It allows for interactive and creative design of digital art spaces.
	2. It focuses only on traditional art methods.
	<i>3. It limits student interaction with digital tools.</i>
	Feedback
	1. Correct. Tinkercad allows for interactive and creative design of
	digital art spaces, enhancing student engagement and creativity.
	2. Incorrect. Tinkercad enhances interaction by providing a digital
	platform for creative expression, not focusing solely on traditional
	methods.
	3. Incorrect. Tinkercad enhances interaction and creativity through
	digital tools.
	Quantier 2
	Question 2
	How can Tinkercad be used effectively in art education?
	1. By focusing solely on physical art creation.
	2. By providing a platform for students to create and curate digital
	art collections.
	3. By limiting access to digital tools.
	Feedback
	1. Incorrect. Tinkercad focuses on digital art creation, not solely on
	physical art methods.
	2. Correct. Tinkercad provides a platform for students to create and
	curate digital art collections, integrating technology with art
	education.
	<i>3. Incorrect. Tinkercad enhances access to digital tools for creative</i>
	exploration.
	Question 3
	Which feature of Tinkercad makes it suitable for educational purposes?
	1 Its shills to croate physical sculptures

1. Its ability to create physical sculptures.

	7
	 Its user-friendly interface and accessibility for digital design. Its focus on limiting digital interaction.
	Feedback
	1. Incorrect. Tinkercad is focused on digital design rather than
	physical sculpture creation.
	2. Correct. Tinkercad's user-friendly interface and accessibility make
	it suitable for educational purposes.
	3. Incorrect. Tinkercad enhances digital interaction, not limits it.
CLASS SESSION 2	Designing and Curating Digital Art with Tinkercad
CLASS SESSION GOAL(S)	Class session 2 aims to equip learners with the skills and knowledge
	needed to design and curate digital art within virtual galleries using
	Tinkercad. Learners will gain a deeper understanding of virtual gallery
	spaces through hands-on design activities and digital tools. They will learn
	how to apply their creative and technical skills to create engaging virtual
	art environments and relate their learning to educational contexts.
LEARNING OUTCOMES	Upon completing the class session 2, the learners should be able to:
	Design and curate a virtual art gallery using Tinkercad.
	Collaborate with peers to develop creative digital art projects.
	Reflect on potential impact of virtual art galleries in education.
LEARNING METHODS	• Interactive Design: Continue using Tinkercad to explore and refine
	virtual gallery designs through creative experimentation.
	• Learning by Design: Engage learners in designing and curating
	virtual art galleries through guided activities.
	Discussion and Reflection: Facilitate group discussions to analyze
	the impact of digital tools on art education and student creativity.
SCENARIO FOR LEARING:	Step 1 – Recap the Key Points (5 minutes):
	• Briefly review the key points learned in the previous class session.
	Step 2 – Creative Activities (20 minutes):
	• Engage in design activities where learners will design and curate
	virtual art galleries using Tinkercad.
	Step 3 – Reflection (5 minutes):
	• Discuss in groups the impact of digital tools on art education and
	creativity.
	• <i>Reflect on how these tools can be integrated into the curriculum.</i>
	Step 4 – Real-life applications (10 minutes):
	 Discuss real-life applications of virtual art galleries in education
	and beyond.
	Examples:
	• Virtual Museum Tours: Allowing students to explore famous art
	collections digitally.
	 Student Exhibitions: Creating virtual spaces to showcase student
	• Student Exhibitions: Creating Virtual spaces to showcase student artwork.
	Step 5 – Wrap-Up and Discussion (5 minutes):
	Recap the key points learned about virtual art galleries.

	• Encourage students to reflect on their learning experiences an ask questions.
REFERENCE MATERIALS / BACKGROUND CONTENTS	 Slides summarizing key points from the first session an introducing new activities and examples Tinkercad website for additional design resources Examples of virtual art galleries and their applications is education
EVALUATION OF THE CLASS SESSION 2 / ASSESMENT	 Question 1 How does engaging in virtual art gallery design activities contribute t your understanding of art education? 1. It reinforces theoretical concepts through practical application. 2. It excludes the use of digital tools, focusing solely on traditiona art methods.
	3. It limits creativity by focusing on pre-made templates.
	 Feedback Correct. Engaging in virtual art gallery design activities allows yo to apply creative and technical skills practically, enhancing you understanding of art education. Incorrect. Virtual gallery design activities involve practice application through digital tools, not excluding them for traditional methods alone. Incorrect. Tinkercad encourages creativity by allowing custor designs rather than limiting creativity.
	 Question 2 Why is it important to discuss real-life applications of virtual art galleries 1. To relate theoretical knowledge to practical applications. 2. To avoid engaging in digital activities. 3. To focus only on traditional art exhibitions.
	 Feedback Correct. Discussing real-life applications helps relate theoretical knowledge to practical applications, reinforcing understanding of digital tools in art education. Incorrect. Discussing real-life applications enhanced understanding by bridging theoretical knowledge with practical applications, not avoiding digital activities. Incorrect. The focus is on integrating digital tools, not solel traditional exhibitions.
	 Question 3 What role do group discussions play in learning about virtual art galleries 1. They hinder reflection on creative processes. 2. They encourage collaboration and deeper understanding. 3. They limit the sharing of creative ideas.

44

Feedback

1. Incorrect. Group discussions encourage reflection on creative processes, fostering deeper understanding.
2. Correct. Group discussions promote collaboration and deeper understanding of digital art and gallery design concepts by sharing insights and reflections on creative activities.
3. Incorrect. Group discussions enhance sharing and collaboration rather than limiting ideas.

5. AR Tool: Zapworks Designer

One of the main AR tools that are proposed for creating lessons by teachers and then used by students to perform tasks required as part of the implementation of individual lessons is Zapworks Designer. Below we provide a brief description of this tool along with instructions for use.

Zapworks Designer

Zapworks Designer is a powerful, browser-based tool designed for creating Augmented Reality experiences without the need for coding expertise. The Giftled AR Case Studies offer immersive experiences designed to captivate and engage the students without the need for technical know-how.

Why Choose Zapworks Designer?

Zapworks Designer offers a user-friendly interface where no coding is required. It provides cross-platform accessibility, allowing users to access AR experiences from any web browser, ensuring flexibility and convenience. Furthermore, it facilitates engagement by offering storytelling, thereby making learning and discovery more captivating. Teachers and educators can also create their own AR case studies using the platform, which is accessible at <u>www.zappar.com/</u>. For assistance and guidance, they can find resources at <u>https://docs.zap.works/</u>.

Accessing AR Experiences:

Using the ZapWorks App: To explore our AR case studies, download the ZapWorks app from your app store (available on iOS and Android). Once the app has been installed, it is simply necessary to launch it and point the device's camera at the QR code provided with each case study. The digital content will then come to life.

QR Code Scanning: Alternatively, the QR codes associated with each AR case study can be scanned directly using the device's camera. This method allows for instant access to the augmented reality experience, eliminating the need for app downloads if preferred.

E-SCHOOL

Annex 1. Guidelines for Curriculum Modules

The guidelines for preparing the modules are described are proposed as follows:

Module Goal(s) (50-60 words)

Write a brief summary of the Module focusing on what the learner will gain by taking this Module. Refer to the learner directly. Do not repeat the Learning Outcomes.

E.g.:

Module aims to equip learners with skills and knowledge related to Learners will gain a deeper understanding of how They will learn how to adapt to Module will help learners acquire the competences necessary to contribute to

or

Module provides learners with a comprehensive understanding of Learners will gain insight into the fundamental concepts and principles of They will also become familiar with its practical uses in Learners will acquire the knowledge and skills necessary to recognize how works, its potential benefits, and its limitations.

Learning Audience (2-3 profiles)

Who's going to read this Module? Separate different audiences with commas.

E.g. Pupils, Youth workers, Young people, Teachers, NGO members, Elementary Students, Trainers, Youth Organizations

Learning Outcomes (3-4 Learning Outcomes)

Start with a verb. Use Bloom's Taxonomy and ABCD format to write the Learning Outcomes. It's better to focus on what the learners should know.

🔁 E-SCHOOL

E.g. Upon completing the Module, the learners should be able to:

- Apply this method
- Contrast this with that
- Give examples about that
- Define / Describe / Determine
- Recognize the importance of
- Identify / Develop

Examine

Learning Methods (3-4 Methods)

What are the learning methods used to realise the learning outcomes of the Module? List the different methods used in the Module with bullet points and shortly describe if needed.

E.g. Learning by Design, Problem-based learning, Gamification, Scenario-based learning, Digital storytelling, Case studies, Group Discussions, Tutorials, Planned Reading, Web quests, Quizzes, Scientific research analysis

Duration

Specify how much time the pupils will need to accomplish all the activities defined in the module.

E.g. 60 minutes, 2 hours, 1 day, 1week,

Tools needed

What are the tools or materials needed to be used for the realization of the Module?

Refer to the materials produced early in WP2, i.e. augmented reality case studies and toolkit introduction videos. Also other additional tools or materials and be indicated here.

Scenario for learning (activities to fulfil all defined Learning Outcomes)

- 1. The content should present the scenario of the Module in the form of steps with learning activities to perform, such as learning presentation, learning video, learning case study, quests-task to realize, additional materials (i.e. scientific and popular science articles, technical documents, blogs).
- 2. The references of the Module have to be added at the end of the Content.
- 3. The content should adequately cover ALL learning outcomes. This is the mustknow content. Do not overload the content with information that a learner MAY

E-SCHOOL

find useful. This is the good-to-know content. Stick to must-know content as much as possible.

- 4. Provide learners with the specific steps required, highlighting processes of what they should do to perform a certain task.
- 5. Provide real-life examples that the learners can relate to.
- 6. Use markdown format to make everything easily readable and memorable. Use bold font to highlight critical information, as well as bulleted lists with related explanations, as much as possible.
- 7. Reflection questions within the content are always welcome, provided that they are relevant to the learners' everyday needs/practice.

Reference Materials / Background Contents

Propose the reference materials, publications, articles that can be useful to realize the Module both for the teacher and for the learner.

Evaluation of the Module / Assessment (1-2 M/C questions per Learning Outcome)

- 1. Align the quiz questions to the Learning Outcomes. Avoid asking questions that test their short-term memory (e.g. when did this happen, who did what, etc.)
- 2. Write enough questions to cover all the Learning Outcomes. Ensure every Learning Outcomes is addressed in at least one quiz question.
- 3. Choose multiple-choice questions with 3 or a maximum of 4 choices (2-3 distractors and one correct choice). Underline the correct answer.
- 4. Make sure that the answer to each question is not obvious by creating distractor choices that make sense.
- 5. Avoid creating lengthy question stems and choices (each choice should be less than 20 words).
- 6. Choices should be approximately of the same size and should not include "all of the above" or "none of the above" as options.
- 7. Provide feedback for correct and all incorrect choices. Just stating that an answer is correct or incorrect is not constructive.

E-SCHOOL

E.g.

Question 1

Which of the following is a benefit of cause marketing for social enterprises?

- 1. Increased product sales
- 2. Reduced operational costs
- 3. Enhanced brand perception

Feedback

- 1. Incorrect. While cause marketing may indirectly lead to increased product sales, it is not a direct benefit for social enterprises in the context of cause marketing. This is because....
- 2. Incorrect. Cause marketing does not directly contribute to reducing operational costs for social enterprises. This is because....
- 3. Correct. Enhanced brand perception is a significant benefit of cause marketing for social enterprises. Collaborating with for-profit companies can elevate the social image and credibility of the social enterprise within the community.

Teachers are recommended to use the following template to create their own lesson module:

MODULE TITLE	
MODULE GOAL(S)	
LEARNING AUDIENCE	•
LEARNING OUTCOMES	Upon completing the Module, the learners should be able to:
	•
LEARNING METHODS	•
	•
DURATION:	
TOOLS NEEDED:	•
SCENARIO FOR LEARING:	Step 1 –
	Step 2 –
	Step 3 –
	Step 4 –
	Step 5 –

E-SCHOOL

	Step 6 –
REFERENCE MATERIALS / BACKGROUND CONTENTS	
EVALUATION OF THE MODULE / ASSESMENT	

PROJECT N°: 2022-1-PL01-KA220-SCH-000087644

GIFTLED

STEAM Education for Gifted Individuals